Near infrared light emission quenching in organolanthanide complexes
نویسندگان
چکیده
منابع مشابه
Stimulated Near-Infrared Light Emission in Graphene
Graphene—a carbon sheet only one atom thick—provides physicists with a playground to explore exotic quantum phenomena, and engineers with a material with which they may be able to miniaturize electronic devices and catch up with Moore’s law [1, 2]. New results reported in Physical Review Letters by Tianqi Li and colleagues at Ames Laboratory and Iowa State University suggest that graphene has a...
متن کاملNear-infrared light photoacoustic ophthalmoscopy
We achieved photoacoustic ophthalmoscopy (PAOM) imaging of the retina with near-infrared (NIR) light illumination. A PAOM imaging system with dual-wavelength illumination at 1064 nm and 532 nm was built. We compared in vivo imaging results of both albino and pigmented rat eyes at the two wavelengths. The results show that the bulk optical absorption of the retinal pigment epithelium (RPE) is on...
متن کاملOptimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes.
This work illustrates a simple approach for optimizing long-lived near-infrared lanthanide-centered luminescence using trivalent chromium chromophores as sensitizers. Reactions of the segmental ligand L2 with stoichiometric amounts of M(CF(3)SO(3))(2) (M = Cr, Zn) and Ln(CF(3)SO(3))(3) (Ln = Nd, Er, Yb) under aerobic conditions quantitatively yield the D(3)-symmetrical trinuclear [MLnM(L2)(3)](...
متن کاملInfrared Light Emission from Semiconductor Devices
We present results using near-infrared (NIR) cameras to study emission characteristics of common defect classes for integrated circuits (ICs). The cameras are based on a liquid nitrogen cooled HgCdTe imaging array with high quantum efficiency and very low read noise. The array was developed for infrared astronomy and has high quantum efficiency in the wavelength range from 0.8 to 2.5 pm. For co...
متن کاملShedding Near-Infrared Light on Brain Networks
Near-infrared spectroscopy is a novel and promising technology for cost effective and noninvasive brain imaging in research and clinical practice. Utilizing the fact that near-infrared light is mostly absorbed by tissue hemoglobin, one can measure the intensity of light scattered and reflected by tissue (e.g., brain) to track local changes in hemoglobin concentrations within cortical layers (ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Physics
سال: 2006
ISSN: 0021-8979,1089-7550
DOI: 10.1063/1.2177431